
推荐序
在数字化时代,数据不仅是一种产生和传递信息的媒介,更是塑造企业竞争优势的决定因素之一。作为知识密集型企业,互联网公司拥有庞大且复杂的数据资源。如何利用这些数据资源加速商业价值变现是一个极其重要且紧迫的命题。借助数据分析,我们能够客观、全面、体系化地呈现业务现状、策略执行与结果之间的关联,并据此强化执行过程的质量与效率、驱动业务策略落地与闭环。
国外具有优秀数据文化的企业包括Google、Amazon、Meta、Netflix等科技公司,国内美团、字节跳动等公司也大量使用数据来驱动企业发展。在实践数据文化的过程中,能够通过数据驱动决策,制定数据治理策略,促进数据共享和协作,并能利用先进的人工智能和机器学习技术不断改进和优化数据文化。我们常说,一个业务的发展如同爬楼梯,业务团队有的觉得是一级级走上来的,有的觉得是“俯卧撑”上来的,有的觉得是跳上来的,实际上都是坐电梯上来的。如何准确衡量和评估业务策略和结果之间的相关性,对“输入项”做功,而非仅仅追求“输出项”的结果?通过建立“Data First”的数据文化,能够更高效地提升决策质量和效率,提升企业的市场洞察力和竞争力,还能更好地在动态的商业环境中把握机会并管理风险。
然而,企业的数据分析能力建设并非朝夕之功。在很多企业中,数据分析主要依赖少数从业者的积极性,而非良好的企业数据文化和明确的机制建设。这往往导致企业缺乏长期且确定性更高的业务策略产生路径,进而制约可持续竞争优势的保持,并造成各类资源的持续浪费。有效的分析机制可以带来巨大的优势,克服个别从业者所带来的人员不稳定性、经验难以复制、团队协作差、管理成本高等劣势。那么,应该如何构建与当前企业发展相匹配的分析机制?
本书提出了一个从实践中萃取的答案:SE环。SE环是作者们在长期业务实践过程中的沉淀与总结,将业务现状(Situation)、高质量问题(Question)、有效回答(Answer)、反馈评价(Evaluation)和知识传播(Expansion)恰当组合,促使数据分析与业务紧密协同并实现正向演进。SE环短期可持续优化业务策略,长期则有助于数据文化与组织能力的塑造,对企业来说非常重要且有意义。正如彼得·德鲁克所说:“你如果无法度量它,就无法管理它”,机制建设与完善是极其艰难的过程,需要进行合理的量化、评价与迭代,否则很难真正落地。这是本书的亮点之一。通过量化的方式不断实现机制的快速迭代,使之能够更有效地驱动企业分析决策能力的提升,并将其融入企业文化和战略规划中,最终形成匹配企业发展需要的驱动机制,实现数据驱动的商业成功。
在过去5年建设有赞的数据分析团队和机制文化的实践中,我最大的体会是,企业领导者对数据驱动商业决策的信念和坚守是成功的关键。这是克服长周期的困难,下定决心投入资源去建设团队、树立体系、制定流程和最终形成数据驱动文化的核心驱动力。
随着人工智能技术的不断发展和应用,以ChatGPT为代表的新一代AGI平台在重塑人机交互的模型,未来的数据分析领域将会发生巨大的变革。在面对海量数据时,人工智能可以帮助企业更高效率、更低成本地进行分析和挖掘,让业务团队更简单、更轻松地获取数据分析之后的结果,进而更好地理解宏观经济环境、市场需求、行业趋势和客户行为。这将提高企业经营决策效率,最终提升商业竞争力。此外,人工智能的发展将给从业人员带来新的机遇和挑战,相关从业者应该积极拥抱技术变革,不断学习,提升认知水平、知识结构和专业能力,以适应快速变化的市场需求。数据分析工作将更多聚焦于数据收集和机器预训练(Fine Tune)两个环节,并更大程度上在企业内普及和推广数据分析工具的全员使用。同时,企业应注重培养这方面的人才以适应全新的工作模式。我相信,人工智能技术的不断革新将为企业带来更广泛的机遇和挑战,只有通过不断学习和创新,企业才能在未来的商业竞争中“适者生存”。
我对此充满期待!
浣昉 有赞COO兼联席总裁 前高瓴资本投资人