![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第2章 一维势场中的粒子
2.1 复习笔记
一、一维势场中粒子能量本征态的一般性质
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image150.png?sign=1739620517-RLfOqgq0xBLWyplNZWLXfghyhU2uFybK-0-c590bad2897e05f275a1e4d528512482)
此即一维粒子的能量本征方程.以下定理1到4,不仅对一维问题成立,对于三维问题也同样适用.
1.定理l 设φ(x)是方程(1)的一个解,对应的能量本征值为E,则φ*(x)也是方程(3)的一个解,对应的能量也是E.
2.定理2 对应于能量的某个本征值E,总可以找到方程(1)的一组实解,凡是属于E的任何解,均可表示为这一组实解的线性叠加.
3.定理3 设V(x)具有空间反射不变性,V(-x)=v(x).如φ(x)是方程(1)的对应于能量本征值E的解,则φ(-x)也是方程(1)的对应于能量E的解.
(1)空间反射算符P
空间反射算符P定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image151.jpg?sign=1739620517-nShzUN0qzoBeN9FtehJy3YrLvs10BEyp-0-90a661a4c1446ce7e1cdcc9391c8ea89)
(2)偶宇称与奇宇称
如果对应于某能量E,方程(3)的解无简并,则解必有确定的宇称(parity)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image152.png?sign=1739620517-Er0XYJXJhcl6J2mtRIzq44JrpmH45F3C-0-00694bdac9c19eb5694103f9233ac396)
对于上式中C=+1的解
称为偶字称(even parity)解.
对于C=-1的解
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image154.jpg?sign=1739620517-lkFWgBpx341Z8IbUCJMTFce8pJzDkCKg-0-60383231279b8ffb1e6bb1f97c7ad359)
称为奇宇称(odd parity)解.
4.定理4 设V(-x)=V(x),则对应于任何一个能量本征值E,总可以找到方程(3)的一组解(每一个解都有确定的宇称),而属于能量本征值E的任何解,都可用它们来展开.
5.定理5 对于阶梯形方位势
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image155.png?sign=1739620517-4I0fYw7P05zR2752DlRYct2hQcCKmXRT-0-aebf4ab457fc41fce832c3fe381c6197)
(V2—V1)有限,则能量本征函数φ(x)及其导数φ'(x)必定是连续的(但如
7.定理7 设粒子在规则(regular)势场V(x)(V(x)无奇点)中运动.如存在束缚态,则必定是不简并的.
二、方势
1.无限深方势阱,离散谱
(1)无限深方势阱本征能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image159.png?sign=1739620517-soiKVjzfgMNZ8Kc2qbhEqGcs3y2hUxrb-0-5dc12421a333c3e290710acbeae32f43)
该本征能量表达式说明说明:并非任何E值所相应的波函数都满足本问题所要求的边条件,一维无限深方势阱中粒子的能量是量子化的,即构成的能谱是离散的(disorete).
(2)无限深方势阱本证波函数
归一化波函数表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image160.jpg?sign=1739620517-qPnHIJyMP6LMQbPpx2VpaX40x6Ikr1vw-0-bff0f3c2c9decea8271a9269c3d35202)
2.有限深对称方势阱
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image161.jpg?sign=1739620517-xLl8p1PjDBjbVyl7G5b7jcQVkbLDTxna-0-4a425fb6c36c32d8a72fd18fd987a98b)
a为阱宽,V0为势阱高度.以下讨论束缚态(0<E<V0)情况.
束缚态能量本征函数(不简并)必具有确定宇称,因此只能取sinkx或coskx形式.
(1)偶宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image162.png?sign=1739620517-8tV3DNpHGo4L3vQSqyI0UFIPJIIBeFf2-0-c7e099b23ddbb3a45e60ec40b7827604)
引进无量纲参数
有
(2)奇宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image165.jpg?sign=1739620517-sfnqlfGCijYCluUJe3sbTeOj7q1cemro-0-afa086dbf088fd7c1f18de3be72c6ca0)
同(1)可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image166.png?sign=1739620517-7VnXcbjF1OBz16HFWt7pfnUG12cJdFMx-0-e3c9f036a4ca87a00982a1793aa5d43d)
只当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image167.jpg?sign=1739620517-VQIRiWHkz13fw0c4UWTv89Su2sqLoA4A-0-0bc9df2da2942876637a3a7f4d524938)
时,才可能出现最低的奇宇称能级.
3.束缚态与离散谱
只当粒子能量取某些离散值E1,E2,E3,…时,相应的渡函数φ1(x),φ2(x),φ3(x),…才满足束缚态边条件:|x|→∞处,φ(x)→0.这些能量值即能量本征值,相应波函数即能量本征函数.
4.方势垒的反射与透射
设具有一定能量E的粒子沿x轴正方向射向方势垒(图2-1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image168.png?sign=1739620517-WoBiknw0mad4KNug4xgGu0EeN52f5Yef-0-dfb599c064fde76178d298e6656bc0c9)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image169.jpg?sign=1739620517-pIADSfarVEezArTIdjFQzGntp1Xc1o6n-0-899c5dcbc9db818aa1507def9a133ebe)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image170.jpg?sign=1739620517-8MYhHS4ZfMpN7VhQV3Bc8orQbT2go1Ui-0-393e3ca0e6e7190fb1f674e6027cb62e)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image171.jpg?sign=1739620517-E8yG3qqkhar9EVCDmdHgw6o87AU435RS-0-62cd9733edd954435275ee4e8c509a43)
图2-1 一维方势(V0>0)
(a)方势垒的反射与透射.E<V0
(b)方势垒的反射与透射,E>V0,
(c)方势阱的反射,透射与其振,E>0
(1)E<V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image172.jpg?sign=1739620517-LAAniwIx24QtEBDZho8cyxrydAemrW8N-0-ef54d79ec385943ba4a68b1530d11c1e)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image176.jpg?sign=1739620517-Gs0y3npGAz97YC2TZlbkvpRDX27pNHVV-0-d86d8533fe20348524aedd8df7b96e19)
(2)E>V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image177.jpg?sign=1739620517-sM6HV5hg45J7iWWynbTLtN8dNhNGbXku-0-ee55a23065f8031da2ba169691b7f89d)
5.方势阱的反射、透射与共振
方势阱对应的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image179.jpg?sign=1739620517-3U9UTdljc10ysvHXt4oUX6oYyE6EGFiU-0-572c6251d0c72d7aba73fa08bd2ec499)
(3)
由式(3)可以看出,如,则一般说来T值很小,除非入射粒子能量E合适,使sink'a=0,此时,T=1(反射系数|R|2=0),这现象称为共振透射.它出现的条件是:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image182.png?sign=1739620517-WmwiejGcnoDvAbrfdiJ0smtSfF5BWaVF-0-0e6f3288aa49264e822863cc5af13b53)
共振时的能量
(4)
式(4)所确定的E,称为共振(resonance)能级.
三、δ势
1.δ势的穿透
设质量为m的粒子(能量E>0)从左入射,碰到δ势垒(图2-2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image184.jpg?sign=1739620517-rXhEDD7sbqfJYJKJ2eqIzgIkBFqb245s-0-4583002dd19fc8ce468000631e60800c)
图2-2
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image185.png?sign=1739620517-yVFUkTqHB8B8n9YStFnap6xCrCjS9TMU-0-eba1658bac82cd686880bf8e2a84858a)
(3)式称为δ势中φ'的跃变条件.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image186.jpg?sign=1739620517-uxdODwIIW5AoDqMfIU9UhS2mzdjyETJD-0-bda54961f1f601fe2cb81f5253307d04)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image188.jpg?sign=1739620517-F4qSgSzeGQWZBL9i57SLHDnEzVGRRwxU-0-3901a459cfd305cb9874ffbc890404ed)
2.势阱中的束缚态
要求束缚能量本征态(不简并)具有确定字称.以下分别讨论.
(1)偶宇称态
归一化的束缚能量本征态波函数可表示为(取C为实数)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image189.jpg?sign=1739620517-tMpfqfq6m3xUoAtNr7eyYv74PUMh6HWU-0-093c17c0e24bdcb5b151b8f698540107)
(2)奇宇称态
波函数应表示为:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image190.jpg?sign=1739620517-rTdzE0NkMxnbk7gbpV9Kj3AtUmtCFbmP-0-4820cc2a41a174db70cf7dc4ef8aae80)
3.δ势波函数微商的跃变条件
δ势波函数微商的跃变条件如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image191.jpg?sign=1739620517-tlaWPmilhpAHuRdse2T0SDd8URf9Vwmb-0-05ea19e96138235468846e0c33e9fa9d)
四、一维谐振子
1.一维谐振子本征能量
此即谐振子的能量本征值.可以看出,谐振子的能级是均匀分布的,相邻的两条能级的间距为.
2.一维谐振子本征波函数
一维谐振子波函数常用的关系式如下
其中。