![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1739621296-oFtI70BZ8mhXKumjRkZBhXJVK9FawjeO-0-5cebb2ca5f344dd45a8f3832cb0b4ccc)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1739621296-HdRBs3TsPppYjJDZZwu3vtA2LFnGf66u-0-0ee81f902fa4ab722892974f23bd4d31)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1739621296-Ds7GqkcvcFuqCHkRjCIbltgI8p3ohl0J-0-6c4de92a6b7cdf581ceabe25a2b054ad)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1739621296-bclcIKHcjZGyzbR1v3pwCXPU1cPAl5JT-0-d7775bff62ac07ffe51f376c41e58a6a)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1739621296-7x8bZUCpDzWRtrRyCC4HIQ9pprdLoeMV-0-f59c970ba1881018b2bb5dc2e951c257)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1739621296-QLTrHwn4P4NZIU51ib9zcYL2Ku3gNVPg-0-8269fc3761c89682252fa2b4148ba3ee)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1739621296-cOvGayoFeBqL9dn6uTtkbaOwvv6dBxxi-0-ffad1077e7b296fe448b9449394daa50)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1739621296-VOeJiWr6LVjcHSnf7eVCEFVQzrjn4oLW-0-18b47a20e7fdbc37df5b39613434a56c)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1739621296-8XaZxH4tEmxejQHBZRMnOTyY5Ilj3iWB-0-0d251fb3aa1fcbce9d61f4f7fd53c068)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1739621296-7Pu1xO0XbS6Q3lyXoUdmNmJsbRPxewQG-0-204bacc03ccfb10a8c312c9fe2ae6950)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1739621296-Bkh2WxmK288rbz683JT7E6fnbiaBOGWL-0-ea1e958c32302de1fbc91d2166882b8e)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1739621296-oKw3jg4ggeads2tVNSML0HnBsevXu0mf-0-007830b499bb40144dbbeb5cae27093c)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1739621296-S7lJnQIRSy6kaxv8zZ5MVQtZwXyN5UW7-0-f952ef4a3849ddf090306968f7e315a2)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1739621296-GUNkUe4sf6VkgwYmaoyuGARNNLMkhI9V-0-9227ff6c8ef0f45664ee8150c7653ac8)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1739621296-xbxM8jprvg6a2b8bUzVeyzL0VLOS89JL-0-f3fb91403ed6b6f848df2e390679cfd4)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1739621296-iX0XeTQU5aUmyBdzXN7B8wS8rfK2hEXx-0-75fc058961bceb41dcef808712eb6f0e)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1739621296-xNBm7IRfAzF6G1FmAhhCv3MzxbLrLiDV-0-668088720b9e572f565d5d5ce448a1aa)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1739621296-E4AXWcXrWQWHVgxQej3o7QVZLXt339se-0-25ff8f05510969b26af8671ddf09bdbd)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1739621296-DA4DLF0Mj936Bl2mKgBVqf4eQIaLNN0m-0-4b15fec12f3a89618f7c4678c277847c)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1739621296-ssmUEsQsZ82SnS4XCypxVhKEgE16ZxTY-0-b710358fbda4006b07af5b83a5b69ff7)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1739621296-FOitkIOIzvNXQXEXDKXQjskA4Nzlgnb5-0-4950e2e48b21226d98fb175c7892e753)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1739621296-MGBMCjhn3zRrBHq6ydBYDrlEOHrHrNln-0-c36838701d69fce40393f43d8025724b)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1739621296-wig2cs8Cypqy8fQKPHqm1TAgSCPtOgAx-0-d55624729434cba74a9150c7ac3837a3)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1739621296-7JgJHnBtVDVddcyW1MiiwOjwyFl56j4l-0-85bcb844679d9feec7b79b912a431d0e)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1739621296-mB5hYxSplw2taqAUZkeiwSpb9Fs6eUst-0-3d16605660a7068f3a1727ec9819cf9d)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1739621296-dinEOyuMLq2Yot22Xbxo4yU2OGFH2wpc-0-d550318518c161bbab36ed04d971a238)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1739621296-fnZb4RF6fnX3YjZJAzR8pDu43BZOo9DL-0-bc50e363358a736098b96f40157116b6)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1739621296-qFeiZYRNMWG3osrwiCehOACPY6yBZgGC-0-de3f0e030ccca0ade6b8c92fa40557ba)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1739621296-HQl6zY7FhNfwxHkrBWpOE9TbzgzN7dAd-0-39f280be9130d2379aa807487ac72a76)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1739621296-lbzxahrb5IXfLXGzfVb92MaadvUcPXHv-0-d6ca2bc485768e617b0eac0b979cae0c)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1739621296-ZnV56ui7RkPbSdRpgQgA9qyLwnyDU7Mn-0-943c368b36feb1a54b40582b64ca164c)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1739621296-hP0TtbvX6yMLY4SsquCuB5PcU9A9YAvk-0-9ce8f2ecdff8157a16200611a73c18dc)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1739621296-kgF64h3Cd7beBPET1DBkVicwzlBDvD4p-0-e8208248f8e463813760dc344b218f33)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1739621296-tmDudNwPzUoFxJexxwPkM77NF3CaV9cv-0-4fcf66521766b9638562e28fe2a41064)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1739621296-u86xayhIDypCugpDnN6my5XBHELLqkGA-0-38524e497d45fe9eba8fd0b323e50ce7)
上式式表明相空间一个体积元h3相当于有一个量子态.