![电磁场与电磁波基础教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/773227/b_773227.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.1.2 矢量场的基本运算
除去矢量除法没有定义外,矢量的加、减和乘都比标量的加、减、乘和除更加复杂。一个矢量A可用一条用箭头指示方向的线段来表示,线段长度表示矢量A的模A,箭头指向表示矢量A的方向,如图1.1所示。一个模为1的矢量称为单位矢量。取aA表示与A同方向的单位矢量,则有A=aAA,其中
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0001.jpg?sign=1739320474-v61wyDLgQCnupNihzhjhqrTAGnMa5S87-0-5ac866b5630c13683fe4cc1032b4dc7f)
1.矢量加、减法
两个矢量A和B可按平行四边形法则相加,其对角线表示合成矢量C=A+B,如图1.2所示。矢量加法服从交换律和结合律
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0002.jpg?sign=1739320474-5gFfdpsslOOqfdYEoQZx4jOorHearioc-0-ab4aaffa3c086813694f46bce2f15d88)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0003.jpg?sign=1739320474-KjqJ37orxmjOc5UriSHMN7KAKunEMunM-0-cc5c3d9307d4706b6787a94077e5f9d5)
B和-B可以看做大小相等方向相反的两个矢量,故借助于矢量加法也可以实现矢量减法,如图1.3所示,有
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0004.jpg?sign=1739320474-cEvGlfR05QfiGiCcc9KqTlyMzUkIAPqs-0-81689fba6961153b8c509e42f1e3e9a1)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0005.jpg?sign=1739320474-U4byoY9gAxcZPt2Wny4gxJSLwkuzEIqF-0-4f6ee42a4fb8ae44552d761f876d888c)
图1.1 点P处的矢量
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0006.jpg?sign=1739320474-k7Xjh5jr90fwWhgiKwFmClSHXOMlIjCC-0-28db6f3677ff06481dcee1c72324fc31)
图1.2 矢量加法
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0007.jpg?sign=1739320474-svrdJbQxyfHZnxS0xPOZ2ce8sGk5INir-0-8478e46a5c8484f7bc27527293316188)
图1.3 矢量减法
2.矢量乘法
一个标量η与一个矢量A的乘积ηA仍为一个矢量,其大小为|η|A,其方向由η的正负来确定:若η>0,则ηA与A平行同向;若η<0,则ηA与A平行反向。
两个矢量A和B的点积(或标积)A·B是一个标量,可看做两矢量相互投影之值,定义为
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0001.jpg?sign=1739320474-LzCI80t8TJeuAzLtpQcshMmFR0WnlN3C-0-061d8cf7bace2410eaace8cd9d8363ae)
式中,θ的取值范围为0≤θ≤π。如图1.4所示,当θ为锐角、直角和钝角时,点积标量为正、零和负值。矢量的点积满足交换律和分配律。
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0002.jpg?sign=1739320474-rwN1CjaIETwUxk2M7yf4sUW69wAQpIGr-0-5c21c0cc632fcb40436c7291139da01b)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0003.jpg?sign=1739320474-BafMrpzKbBAGq8Bohn8a6KpeSIOrYDiQ-0-47984a4d4442341b0252d72d18e50b7f)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0004.jpg?sign=1739320474-Va6QT6kDSh8eHKs2yOM3ZK6EKq4rHXw7-0-f94d7d4a98cb3402ee0b93c2e9ff5c3a)
图1.4 矢量点积
两个矢量A和B的叉积(或矢积)A×B是一个矢量,它垂直于A和B所在的平面,其指向按右旋法则来确定:当右手四指从矢量A旋转θ角至B时大拇指的指向,如图1.5所示,其定义为
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0005.jpg?sign=1739320474-0ziRNSxaSYWmNtX0BbDuQj6AV0pQ6Q2C-0-73fa11af43e5e08c5569b1f86351c903)
叉积不满足交换律,但满足分配律,有
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0006.jpg?sign=1739320474-Ug2z3WLACI49uwc5kFjQ4hw5ygWtsaCy-0-c0675b5ea2c37b53ab8dcdc8e65047a6)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0007.jpg?sign=1739320474-J8KxhmzvB6gNMtXki8QcNUTAYG5zUcjX-0-1aa15561262a8cd6c5f91f1daf5ec23e)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739320474-6Rr76jMR4yxq58uCAHFtRHtsDqeAjHuS-0-d981b6c5da9c6e7beee82e571fd195e7)
图1.5 矢量叉积