联邦学习:原理与算法在线阅读
会员

联邦学习:原理与算法

王健宗 李泽远 何安珣 王伟

教材教辅/研究生/本科/专科教材· 12.9万字

更新时间:2021-12-06 11:59:55

最新章节:参考文献
开会员,本书免费读 >
数据孤岛问题已经成为制约人工智能发展的主要阻碍。在此背景下,联邦学习(FederatedLearning)作为一种新兴的机器学习技术范式,凭借其突出的隐私保护能力,展示出在诸多业务场景中的应用价值。本书从联邦学习的基础知识出发,深入浅出地介绍了中央服务器优化和联邦机器学习的算法体系,详细阐述了联邦学习中涉及的加密通信模块的相关知识,以定性和定量的双视角建立了联邦学习服务质量的评估维度、理论体系,还延伸介绍了提升联邦学习服务质量的方法,并对联邦学习的研究趋势进行了深入探讨与分析,可以对设计和选择算法提供工具式的参考和帮助。本书是高校、科研院所和业界相关学者研究联邦学习技术的理想读本,也适合大数据、人工智能行业的从业者和感兴趣的读者参考。
品牌:人邮图书
上架时间:2021-11-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
加书架
下载
听书

联邦学习:原理与算法最新章节

查看全部
立即阅读
王健宗 李泽远 何安珣 王伟
主页

最新上架