
会员
人工智能:模式识别
更新时间:2020-09-05 00:32:07
最新章节:参考文献开会员,本书免费读 >
本书是"人工智能出版工程”系列图书之一。模式识别是人工智能的重要组成部分,本书简要介绍了模式识别的基本概念,以模式表示为切入点,针对近20年来模式识别领域研究的热点问题,系统阐述了线性子空间表示、非线性子空间表示、流形学习、稀疏表示、低秩模型、深度学习等方面的研究进展和相关代表性方法。本书可供高等院校人工智能、智能科学与技术、计算机及相关专业研究生或高年级本科生阅读,也可供对模式识别感兴趣的研究人员和工程技术人员阅读和参考。
上架时间:2020-08-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
人工智能:模式识别最新章节
查看全部同类热门书
最新上架
- 会员
ChatGPT进阶:提示工程入门
本书共分为9章,内容涵盖三个层次:介绍与解读、入门学习、进阶提升。第1-2章介绍与剖析了ChatGPT与提示工程,并从多个学科的角度探讨了提示工程学科。第3-5章演示了ChatGPT的实际运用,教你如何使用ChatGPT解决自然语言处理问题,并为你提供了一套可操作、可重复的提示设计框架,让你能够熟练驾驭ChatGPT。第6-9章讲解了来自学术界的提示工程方法,以及如何围绕ChatGPT进行创新。计算机9.7万字 大模型垂直领域低算力迁移:微调、部署与优化
本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你计算机13.7万字- 会员
人,伦理,机器人:一本孩子写给孩子的书
本书围绕“公平、隐私与保障、可靠与安全、包容、负责、透明”六个人工智能需要遵循的原则,诠释当代青少年对负责任的人工智能的认识和思考。计算机7.1万字 - 会员
法律人AI指南:大模型10倍提升工作效率的方法与技巧
本书系统地探讨了人工智能对法律行业的深远影响、法律人应该掌握的AI知识以及相关的法律AI工具。本书共14章,分为五部分。第一部分(第1章)介绍了大模型的基础知识以及AI在法律领域的应用趋势和场景,并深入探讨了AI对法律行业带来的影响等。第二部分(第2~6章)针对法律人的主要工作任务,包括类案检索、案情分析、法律咨询、法律文书写作、合同审查等,详细讲解了应该如何使用AI来提升工作效率。第三部分(第7计算机23.8万字 - 会员
AIGC革命:Web 3.0时代的新一轮科技浪潮
本书立足于AIGC技术前沿与发展趋势,全面阐述了AIGC的概念内涵、底层技术与应用场景,详细梳理全球科技巨头在AIGC领域的战略布局,并辅之以大量生动有趣的案例,深度剖析AIGC在各行业领域的应用场景,旨在引导读者真切感受AIGC革命浪潮蕴含的商业创造力。全书分为五个部分,共18章。第一部分主要厘清AIGC技术的起源与演变,阐述席卷全球的AIGC背后的技术架构以及AIGC的应用场景;第二部分重点剖计算机11.4万字 - 会员
AIGC驱动工业智能设备:系统设计与行业实践
(1)AI与AIGC基础知识:从基础入手,深入讲解AI技术的基本概念和原理。通过通俗易懂的讲解和示例,帮助读者建立坚实的理论基础,为后续章节的深入学习打下良好基础。(2)智能设备上的AIGC系统设计:详细介绍AIGC技术在实际应用过程中的各种功能设计和实现方法。内容涵盖算法选择、模型训练、系统集成等各个环节,通过丰富的技术细节和设计策略,帮助读者全面掌握AIGC技术的应用要点。(3)AIGC关键工计算机18万字 - 会员
人工智能治理研究
本书从技术和规制两个角度入手,以人工智能治理的法律、公共政策以及伦理规范等相关社会行为和社会关系的规则建立和运行为主要思考方向和研究进路,在梳理人工智能发展情况、欧盟及其他国家人工智能立法与政策发布现状的基础上,对人工智能治理的基础、基本路径及我国人工智能产业、政策与规制思路进行了全面和有益的探索。计算机23.9万字 - 会员
AI时代程序员开发之道:ChatGPT让程序员插上翅膀
本书从介绍“ChatGPT第一次接触”开始,分析如何使用该工具来提高开发效率和质量。书中每一章都涵盖了ChatGPT的不同应用场景,从编写各种文档,到辅助进行需求分析和系统设计,以及数据库设计和开发高质量代码等均有讲解。还介绍了如何使用ChatGPT辅助进行系统测试以及任务管理,并对源代码底层逻辑进行了分析。计算机8.8万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字